IT |
気になる、記になる… |
天下一品、今月中旬にスマホ向け公式アプリをリリースへ |
https://taisy0.com/2021/09/07/144997.html
|
天下一品 |
2021-09-07 08:27:48 |
IT |
気になる、記になる… |
日本マイクロソフト、「Xbox Series X Halo Infinite リミテッド エディション」などの予約受付を9月21日より開始へ |
https://taisy0.com/2021/09/07/144990.html
|
infinite |
2021-09-07 08:15:09 |
TECH |
Engadget Japanese |
サムスン、Galaxy新製品を9月8日に国内発表 ライブ配信あり |
https://japanese.engadget.com/samsung-084024760.html
|
galaxy |
2021-09-07 08:40:24 |
TECH |
Engadget Japanese |
新型ワーゲンバスこと「ID.Buzz」プロトタイプ、Argo AIの自動運転システム開発車両に |
https://japanese.engadget.com/id-buzz-appears-as-a-self-driving-prototype-080025877.html
|
argoai |
2021-09-07 08:00:25 |
ROBOT |
ロボスタ |
ロボバリスタ「Ella」が色鮮やかな演出と共に上質なコーヒーを提供 東京駅と横浜駅でテストマーケティング JR東日本がシンガポールのCrown社と連携 |
https://robotstart.info/2021/09/07/robo-varistor-ella-test-marketing.html
|
crown |
2021-09-07 08:21:23 |
IT |
ITmedia 総合記事一覧 |
[ITmedia News] 「デザイン婚姻届」販売サイトでクレカのセキュリティコードなど流出 改ざん受け、ブラウザ入力情報を外部に転送 |
https://www.itmedia.co.jp/news/articles/2109/07/news133.html
|
itmedia |
2021-09-07 17:19:00 |
IT |
ITmedia 総合記事一覧 |
[ITmedia News] 閉館した「大江戸温泉物語」が特設サイトを公開──「18年間の物語」 |
https://www.itmedia.co.jp/news/articles/2109/07/news132.html
|
itmedia |
2021-09-07 17:06:00 |
IT |
SNSマーケティングの情報ならソーシャルメディアラボ【Gaiax】 |
8月の主要SNSニュースまとめ! IGストーリーズ、スワイプアップ終了。ショップタブ内に新広告ほか。 |
https://gaiax-socialmedialab.jp/post-113416/
|
instagram |
2021-09-07 08:54:26 |
python |
Pythonタグが付けられた新着投稿 - Qiita |
OpenCVのカスケード分類器のパラメータをリアルタイムで変化させて顔認識結果を確認できるアプリを作りました。 |
https://qiita.com/okateru/items/b3abe116b10e13f24ce5
|
コチラの記事で紹介している顔認識アプリもStreamlitで作ったのですが、学習済みモデルの容量がMB近くでまぁherokuになんてデプロイできないんですよ。 |
2021-09-07 17:55:57 |
python |
Pythonタグが付けられた新着投稿 - Qiita |
Python3でCSVからJSONへ変換する |
https://qiita.com/tabimoba/items/794cd8b7203b0356b5c8
|
PythonでCSVからJSONへ変換するPythonを使用して、CSVファイルをJSONファイルに変換します。 |
2021-09-07 17:31:47 |
js |
JavaScriptタグが付けられた新着投稿 - Qiita |
【JavaScript】reduceメソッド |
https://qiita.com/YuStarrr/items/239c016725e3fe866692
|
JavaScriptのreduceメソッドについてアウトプットしていきますreduceメソッドとはreduceメソッドは、配列の各要素に対して引数で与えられたreducer関数を実行して、単一の出力値を生成します。 |
2021-09-07 17:54:52 |
Program |
[全てのタグ]の新着質問一覧|teratail(テラテイル) |
CNNを用いた回帰分析でY-Y Plotが寝る問題について |
https://teratail.com/questions/358196?rss=all
|
|
2021-09-07 17:54:10 |
Program |
[全てのタグ]の新着質問一覧|teratail(テラテイル) |
【VBA】値のみコピー |
https://teratail.com/questions/358195?rss=all
|
【VBA】値のみコピー前提・実現したいことマクロVBAで、別ブックBookのシートSheetをTestxlsmにコピーしてくるというコードを書きました。 |
2021-09-07 17:53:00 |
Program |
[全てのタグ]の新着質問一覧|teratail(テラテイル) |
スクリプト名を引数として扱えるのか |
https://teratail.com/questions/358194?rss=all
|
スクリプト名を引数として扱えるのか前提・実現したいことオブジェクトにアタッチされている変数を参照したいです。 |
2021-09-07 17:36:34 |
Program |
[全てのタグ]の新着質問一覧|teratail(テラテイル) |
SQLで文字型の日付データの期間指定抽出(AlteryxからBigQueryのデータを取得する) |
https://teratail.com/questions/358193?rss=all
|
SQLで文字型の日付データの期間指定抽出AlteryxからBigQueryのデータを取得する実現したいこと下記のようなデータがあります。 |
2021-09-07 17:36:10 |
Program |
[全てのタグ]の新着質問一覧|teratail(テラテイル) |
ファイル読み込み、書き込み (errno_t)について |
https://teratail.com/questions/358192?rss=all
|
ファイル読み込み、書き込みerrnotについてフアイルの書き込みなどについて質問です。 |
2021-09-07 17:23:32 |
Program |
[全てのタグ]の新着質問一覧|teratail(テラテイル) |
Vagrant : UUIDを確認できない |
https://teratail.com/questions/358191?rss=all
|
VagrantUUIDを確認できないvagrantの環境構築でエラーが発生してしまいました。 |
2021-09-07 17:16:50 |
Program |
[全てのタグ]の新着質問一覧|teratail(テラテイル) |
win32comで発生したExcel内のボタンクリックを検知して処理を行う方法 |
https://teratail.com/questions/358190?rss=all
|
wincomで発生したExcel内のボタンクリックを検知して処理を行う方法wincomで発生させたExcelでGUIが構築できないか考えています。 |
2021-09-07 17:15:37 |
Program |
[全てのタグ]の新着質問一覧|teratail(テラテイル) |
Pythonを用いてExcelの列の特定の数字が2回以下続いた場合、空欄にするプログラムを作成したい |
https://teratail.com/questions/358189?rss=all
|
Pythonを用いてExcelの列の特定の数字が回以下続いた場合、空欄にするプログラムを作成したい前提・実現したいこと作成してあるExcelファイルのD列を取得して特定の値今回はが回以下続いた場合は空欄にするプログラムを作成したいです。 |
2021-09-07 17:08:31 |
Program |
[全てのタグ]の新着質問一覧|teratail(テラテイル) |
Python辞書表記 pandas |
https://teratail.com/questions/358188?rss=all
|
Python辞書表記pandasd上のようなdtuplevalue添え字のtupleをキーに値を辞書として表現するデータ形式にpythonでcsv形式のファイルを取り込んで、pandasを用いて変更したいのですがやり方が分かりません。 |
2021-09-07 17:05:34 |
Program |
[全てのタグ]の新着質問一覧|teratail(テラテイル) |
Apache上でOpenCVが起動しない |
https://teratail.com/questions/358187?rss=all
|
Apache上でOpenCVが起動しない前提・実現したいことPythonnbspnbspOpenCVnbspnbspApachenbspnbspflaskでWebアプリを作成し、デプロイをしようとしています。 |
2021-09-07 17:00:23 |
Ruby |
Rubyタグが付けられた新着投稿 - Qiita |
No route matches [GET] "/logout"の解決 |
https://qiita.com/konraku/items/5ed854caa1e56a83fee0
|
NoroutematchesGETquotlogoutquotの解決前提Railsruby問題railstutorial章を学習中、ログアウト機能を追加したので試してみた所、下記エラーが発生。 |
2021-09-07 17:42:39 |
Ruby |
Rubyタグが付けられた新着投稿 - Qiita |
【Rails】includesメソッドと部分テンプレートを繰り返しrenderにする事によってN+1問題を回避する |
https://qiita.com/osamudaira1/items/0f98e956e901234f5823
|
今回の場合だとboardhtmlerbとboardsなので、一致しているということになります。 |
2021-09-07 17:09:21 |
Linux |
Ubuntuタグが付けられた新着投稿 - Qiita |
【Ubuntu】vimでPrettierする |
https://qiita.com/wafuwafu13/items/52d71c8aa082f4bc647c
|
【Ubuntu】vimでPrettierするvimのプラグイン管理とかがまだよくわかってないけど、とりあえず動いたからメモ。 |
2021-09-07 17:08:03 |
Linux |
Ubuntuタグが付けられた新着投稿 - Qiita |
「さくらのVPS」のサーバーで「さくらのクラウド」のオブジェクトストレージをマウントしてみる |
https://qiita.com/mix_dvd/items/ab6ffe0c0e77cde2af32
|
「さくらのVPS」のサーバーで「さくらのクラウド」のオブジェクトストレージをマウントしてみるはじめに動画を大量に扱うサービスを開発していて、サーバの容量が足りなくなった時にどうしようかと考えていて、色々と検討した末にオブジェクトストレージを使用することにしたので、オブジェクトストレージをマウントする手順をメモしておく。 |
2021-09-07 17:03:52 |
Linux |
Ubuntuタグが付けられた新着投稿 - Qiita |
gcc, makeがありませんのトラブルシューティング |
https://qiita.com/pyon_kiti_jp/items/8d72f7da5235577c9647
|
warninggccnotfoundusingCCccabortedcompilernotfoundccどうも、Cの開発環境が入っていないもよう。 |
2021-09-07 17:01:57 |
Git |
Gitタグが付けられた新着投稿 - Qiita |
リモートブランチとローカルブランチのファイル名のみの修正差分表示 |
https://qiita.com/shimaMatz/items/783953f79129d7c9fca3
|
そんな時は、以下を実行するとgitdiffnameonlyこれでファイル名のみ取得できるので、便利ですよω注意点これ新規ファイルは見れないのですよ。 |
2021-09-07 17:30:21 |
Ruby |
Railsタグが付けられた新着投稿 - Qiita |
【RSpec】結合テストコードでセレクト要素を取得する |
https://qiita.com/kenta-nishimoto-1111/items/104b051f56c9f5492946
|
【RSpec】結合テストコードでセレクト要素を取得するはじめに今回は下記の画像のようにセレクト形式のフォームのテストコードの際にセレクト要素を取得する方法について記述します。 |
2021-09-07 18:00:17 |
Ruby |
Railsタグが付けられた新着投稿 - Qiita |
No route matches [GET] "/logout"の解決 |
https://qiita.com/konraku/items/5ed854caa1e56a83fee0
|
NoroutematchesGETquotlogoutquotの解決前提Railsruby問題railstutorial章を学習中、ログアウト機能を追加したので試してみた所、下記エラーが発生。 |
2021-09-07 17:42:39 |
Ruby |
Railsタグが付けられた新着投稿 - Qiita |
【Rails】includesメソッドと部分テンプレートを繰り返しrenderにする事によってN+1問題を回避する |
https://qiita.com/osamudaira1/items/0f98e956e901234f5823
|
今回の場合だとboardhtmlerbとboardsなので、一致しているということになります。 |
2021-09-07 17:09:21 |
海外TECH |
DEV Community |
Identifier in Python by CodeExampler Website |
https://dev.to/codeexampler/identifier-in-python-by-codeexampler-website-33do
|
Identifier in Python by CodeExampler WebsiteIn this Technician s Python article we are getting to study identifier in python They re the essential building blocks of Python and that we use them everywhere while writing programs So it s important to know everything about them We will see the principles to define identifiers and every one of the simplest practices following while defining Python identifiers Let s start with the definition of identifiers Q What is Python Identifier “An identifier may be a name given to an entity In very simple words an identifier may be a user defined name to represent the essential building blocks of Python It is often a variable a function a class a module or another object Naming Rules for IdentifiersNow you recognize what exactly identifiers are So how can we use them We can t use anything there are some certain rules to stay in mind that we must follow while naming identifiers The Python identifier is formed with a mixture of lowercase or uppercase letters digits or an underscore These are the valid characters Lowercase letters a to z Uppercase letters A to Z Digits to Underscore Examples of a legitimate identifier numFLAGget user nameuserDetails An identifier cannot start with a digit If we create an identifier that starts with a digit then we ll get a software error |
2021-09-07 08:54:36 |
海外TECH |
DEV Community |
AppSync: Resolving mutations directly off of Aurora Serverless |
https://dev.to/alichherawalla/appsync-resolving-mutations-directly-off-of-aurora-serverless-1f96
|
AppSync Resolving mutations directly off of Aurora ServerlessThe database acts as a single source of truth in most modern applications Backend applications typically expose APIs for CRUD operations to query and mutate values in the underlying data store Based on the authentication scope of the user the users should be allowed to fetch update create delete entities in the database With strong Role based access control RBAC CRUD operations can be resolved directly off of the database AppSync is a managed service from AWS that exposes a GraphQL interface to interact with the API It collects data from and resolves queries and mutations from multiple data sources An Aurora Serverless Cluster can be used as a data source In this tutorial I will take you through how to resolve mutations directly off of the Aurora in AppSync AppSync uses Apache VTL resolvers to transform GraphQL requests from the client into requests to the data source It provides support for the reverse as well It translates the response from the data source into a GraphQL response For examplemutation CreateNote createNote input note Mow the lawn listId deadline T Z id note listId deadline done The above request needs to be transformed intoINSERT INTO notes note list id deadline VALUES Mow the lawn T Z This tutorial assumes that you have a good understanding of serverless frameworkAurora ServerlessAWS AppSyncPostgreSQLGraphQLIn this tutorial I will take you through how toresolve create mutations directly off of the database and return the newly created entity resolve update mutations directly off of the database and return the updated entity resolve delete mutations directly off of the database and return the deleted entity We will soft delete records from the database i e deleted at NOW Starter ProjectPlease clone the following repository This project consists of a CD pipeline that will create the required infrastructure including the PostgreSQL DB and deploy your AWS AppSync application using the serverless frameworkhas queries to fetch users notes and lists uses AWS Lambdas as a data source to resolve queriesThrough the course of this tutorial we will add support for mutations to this application Setup the databaseRun the setup local sh script which will run the database migrations scripts setup local sh Adding PostgreSQL Aurora Serverless as an AppSync data sourceStep Create an rds folder with a datasources yml file in the resources foldermkdir p resources rdstouch resources rds datasources ymlStep Copy the snippet below in the newly created datasources yml type RELATIONAL DATABASE name POSTGRES RDS description Aurora Serverless Database for ToDo Application config dbClusterIdentifier Ref RDSCluster databaseName appsync rds todo env STAGE awsSecretStoreArn Ref RDSInstanceSecret serviceRoleArn Fn GetAtt AppSyncRDSServiceRole Arn region env REGION The type of the data source is RELATIONAL DATABASE and its name is POSTGRES RDSThe awsSecretStoreArn in the config contains the credentials required for AppSync to access the database Step Copy the snippet below in the serverless ymlcustom appSync dataSources file resources rds datasources yml Step Run yarn start offline It should execute without any errors Commit the progress so far git add git commit m Add Postgres as a data source Exposing create mutations by adding them to the schema graphqlStep Add the mutations and types for create create mutation inputsinput CreateUserRequest name String userRef String input CreateNoteRequest note String listId ID deadline AWSDateTime done Boolean input CreateListRequest name String userId Int mutation responsestype MutatedList id ID name String userId Int type MutatedUser id ID name String userRef String type MutatedNote id ID note String listId ID deadline AWSDateTime done Boolean type Mutation create mutations createNote input CreateNoteRequest MutatedNote createList input CreateListRequest MutatedList createUser input CreateUserRequest MutatedUser Step Go to GraphiQL or any other GraphQL IDE For macOS you can download it from here In the Docs pane on the right you will be able to see the newly added mutations as shown belowClick on createNoteClick on MutatedNoteGo back and click on CreateNoteRequest Similarly you can go through all the other newly created mutationsRunning the mutationmutation CreateNote createNote input note Mow the lawn listId deadline T Z id note listId deadline done Since the data source and resolvers for the mutations have not been wired in invoking the mutation will result in an error data null errors message Cannot return null for non nullable field Mutation createNote locations line column path createNote Commit the progress so far git add git commit m Add mutations and types in the schema graphql Add resolvers for create mutationsStep Create a folder for mutation resolvers mkdir resolvers mutationsStep Create a new file for the createList request resolver touch resolvers mutations createList req vtlCopy the snippet below set cols set vals foreach entry in ctx args input keySet set regex a z A Z set replacement set toSnake entry replaceAll regex replacement toLowerCase set discard cols add toSnake if util isBoolean ctx args input entry if ctx args input entry set discard vals add else set discard vals add end else set discard vals add ctx args input entry end end set valStr vals toString replace replace set colStr cols toString replace replace if valStr substring set valStr valStr end if colStr substring set colStr colStr end version statements INSERT INTO lists colStr VALUES valStr SELECT FROM lists ORDER BY id DESC LIMIT We need to convert the incoming GraphQL into SQL statements tocreate a record in the databasereturn the created recordAccording to convention the GraphQL request is in camelCase However the database columns are snake case Iterate over the keys in the args inputConvert each key from camelCase to snake case Boolean values are stored SMALLINT in the database If the value for input property is boolean we convert it to so it can be inserted into the database Stringify the values and columns array Replace square braces with round braces This is a hack because the velocityjs engine handles stringification slightly differently So adding this makes sure that our resolvers work both locally as well as on the deployed instance Step Create a new file for the createNote request resolver touch resolvers mutations createNote req vtlCopy the snippet below set cols set vals foreach entry in ctx args input keySet set regex a z A Z set replacement set toSnake entry replaceAll regex replacement toLowerCase set discard cols add toSnake if util isBoolean ctx args input entry if ctx args input entry set discard vals add else set discard vals add end else set discard vals add ctx args input entry end end set valStr vals toString replace replace set colStr cols toString replace replace if valStr substring set valStr valStr end if colStr substring set colStr colStr end version statements INSERT INTO notes colStr VALUES valStr SELECT FROM notes ORDER BY id DESC LIMIT Step Create a new file for the createUser request resolver touch resolvers mutations createUser req vtlCopy the snippet below set cols set vals foreach entry in ctx args input keySet set regex a z A Z set replacement set toSnake entry replaceAll regex replacement toLowerCase set discard cols add toSnake if util isBoolean ctx args input entry if ctx args input entry set discard vals add else set discard vals add end else set discard vals add ctx args input entry end end set valStr vals toString replace replace set colStr cols toString replace replace if valStr substring set valStr valStr end if colStr substring set colStr colStr end version statements INSERT INTO users colStr VALUES valStr SELECT FROM users ORDER BY id DESC LIMIT Step Create the response resolver for all the mutationstouch resolvers mutations response vtlCopy the snippet below in the newly created file set index set result util parseJson ctx result set meta result sqlStatementResults columnMetadata foreach column in meta set index index if column typeName timestamptz set time result sqlStatementResults records index stringValue set nowEpochMillis util time parseFormattedToEpochMilliSeconds time substring yyyy MM dd HH mm ssZ set isoDateTime util time epochMilliSecondsToISO nowEpochMillis util qr result sqlStatementResults records index put stringValue isoDateTime end end set res util parseJson util rds toJsonString util toJson result set response foreach mapKey in res keySet set s mapKey split set camelCase set isFirst true foreach entry in s if isFirst set first entry substring else set first entry substring toUpperCase end set isFirst false set stringLength entry length set remaining entry substring stringLength set camelCase camelCase first remaining end util qr response put camelCase res mapKey end utils toJson response Convert the DateTime value from the database into an ISO Date Time When using RDS as a data source AppSync isn t able to handle AWSDateTime out of the box Convert the snake case column names to camelCase Step Create the mutation mapping templates for the create mutationstouch resources mapping templates mutations ymlCopy the snippet below in the newly created file type Mutation field createNote request mutations createNote req vtl response mutations response vtl dataSource POSTGRES RDS type Mutation field createList request mutations createList req vtl response mutations response vtl dataSource POSTGRES RDS type Mutation field createUser request mutations createUser req vtl response mutations response vtl dataSource POSTGRES RDSRegister the mutation mapping templates in the serverless ymlcustom appSync mappingTemplates file resources mapping templates mutations yml Run the application using yarn start offline and execute the newly created mutationsmutation CreateUser createUser input name Mac userRef mac id name userRef mutation CreateList createList input name House chores userId id name userId mutation CreateNote createNote input note Mow the lawn listId deadline T Z id note listId deadline done Create UserCreate ListCreate NoteCommit the progress till heregit add git commit m Add support for create mutations Exposing update mutations by adding them to the schema graphqlStep Add the mutations and types for update update mutation inputsinput UpdateNoteRequest id ID note String listId ID done Boolean deadline AWSDateTime input UpdateListRequest id ID name String userId Int input UpdateUserRequest id ID name String userRef String type Mutation update mutations updateList input UpdateListRequest MutatedList updateNote input UpdateNoteRequest MutatedNote updateUser input UpdateUserRequest MutatedUser Add resolvers for update mutationsStep Create a new file for the updateList request resolver touch resolvers mutations updateList req vtlCopy the snippet below set update set equals foreach entry in ctx args input keySet set cur ctx args input entry set regex a z A Z set replacement set toSnake entry replaceAll regex replacement toLowerCase if util isBoolean cur if cur set cur else set cur end end if util isNullOrEmpty update set update toSnake equals cur else set update update toSnake equals cur end end version statements UPDATE lists SET update WHERE id ctx args input id SELECT FROM lists WHERE id ctx args input id We need to convert the incoming GraphQL into SQL statements toupdate a record in the databasereturn the updated recordAccording to convention the GraphQL request is in camelCase However the database columns are snake case Iterate over the keys in the args inputConvert each key from camelCase to snake case Boolean values are stored SMALLINT in the database If the value for input property is boolean we convert it to so it can be inserted into the database If update already has a value append a comma Step Create a new file for the updateNote request resolver touch resolvers mutations updateNote req vtlCopy the snippet below set update set equals foreach entry in ctx args input keySet set cur ctx args input entry set regex a z A Z set replacement set toSnake entry replaceAll regex replacement toLowerCase if util isBoolean cur if cur set cur else set cur end end if util isNullOrEmpty update set update toSnake equals cur else set update update toSnake equals cur end end version statements UPDATE notes SET update WHERE id ctx args input id SELECT FROM notes WHERE id ctx args input id Step Create a new file for the updateUser request resolver touch resolvers mutations updateUser req vtlCopy the snippet below set update set equals foreach entry in ctx args input keySet set cur ctx args input entry set regex a z A Z set replacement set toSnake entry replaceAll regex replacement toLowerCase if util isBoolean cur if cur set cur else set cur end end if util isNullOrEmpty update set update toSnake equals cur else set update update toSnake equals cur end end version statements UPDATE users SET update WHERE id ctx args input id SELECT FROM users WHERE id ctx args input id Step Copy the snippet below in the mapping templates mutations yml type Mutation field updateList request mutations updateList req vtl response mutations response vtl dataSource POSTGRES RDS type Mutation field updateNote request mutations updateNote req vtl response mutations response vtl dataSource POSTGRES RDS type Mutation field updateUser request mutations updateUser req vtl response mutations response vtl dataSource POSTGRES RDSRun the application using yarn start offline and execute the newly created mutationsmutation UpdateList updateList input id userId id name userId mutation UpdateNote updateNote input id note This is a new note id note listId deadline done mutation UpdateUser updateUser input id userRef mac id name userRef Update ListUpdate NoteUpdate UserCommit the progress till heregit add git commit m Add support for update mutations Exposing delete mutations by adding them to the schema graphqlStep Add the mutations and types for deletetype Mutation delete mutations deleteList id ID MutatedList deleteNote id ID MutatedNote deleteUser id ID MutatedUser Add resolvers for delete mutationsStep Create a new file for the deleteList request resolver touch resolvers mutations deleteList req vtlCopy the snippet below version statements UPDATE lists set deleted at NOW WHERE id ctx args id SELECT FROM lists WHERE id ctx args id We need to convert the incoming GraphQL into SQL statements todelete a record in the databasereturn the deleted recordStep Create a new file for the deleteNote request resolver touch resolvers mutations deleteNote req vtlCopy the snippet below version statements UPDATE notes set deleted at NOW WHERE id ctx args id SELECT FROM notes WHERE id ctx args id Step Create a new file for the deleteUser request resolver touch resolvers mutations deleteUser req vtlCopy the snippet below version statements UPDATE users set deleted at NOW WHERE id ctx args id SELECT FROM users WHERE id ctx args id Step Copy the snippet below in the mapping templates mutations yml type Mutation field deleteList request mutations deleteList req vtl response mutations response vtl dataSource POSTGRES RDS type Mutation field deleteNote request mutations deleteNote req vtl response mutations response vtl dataSource POSTGRES RDS type Mutation field deleteUser request mutations deleteUser req vtl response mutations response vtl dataSource POSTGRES RDSRun the application using yarn start offline and execute the newly created mutationsmutation DeleteList deleteList id id name userId mutation DeleteNote deleteNote id id note listId deadline done mutation DeleteUser deleteUser id id name userRef Delete ListDelete NoteDelete UserCommit the progress till heregit add git commit m Add support for delete mutations There it is you know have created update and delete mutations resolving directly off of the database Auto generating a postman collectionStep Install the graphql testkit Step Run the application usingyarn start offlineStep Generate the postman collectiongraphql testkit endpoint http localhost graphql maxDepth header x api key Import the newly created collection into Postman and test out your queries and mutations Where to go from hereTo write tests in the postman collection and run them as part of the CI pipeline head over to our article on postman testI hope you enjoyed this tutorial on resolving mutations directly off of the database using AppSync and Aurora Serverless If you have any questions or comments please join the forum discussion below ➤This blog was originally posted on To know more about what it s like to work with Wednesday follow us on Instagram Twitter LinkedIn |
2021-09-07 08:31:45 |
海外TECH |
DEV Community |
CAST AI vs. CloudCheckr: Which one is a better choice for your team? |
https://dev.to/castai/cast-ai-vs-cloudcheckr-which-one-is-a-better-choice-for-your-team-2k94
|
CAST AI vs CloudCheckr Which one is a better choice for your team Keeping cloud costs in check is a challenge for many teams Luckily they can now benefit from various cost management and optimization solutions that often come with handy automation which requires no extra work from engineers and guarantees savings Here s a comparison of two cost optimization solutions for teams that work with the three major cloud service providers CAST AI vs CloudCheckr Keep on reading to find out which one can support your teams better CAST AI automated cost optimization for Kubernetes CloudCheckr cloud cost management and visibilityCreated by cybersecurity experts CAST AI is an ISO certified comprehensive cloud automation platform for optimizing Kubernetes environments Companies across e commerce and adtech are using CAST AI to save from to even on their cloud bills CloudCheckr is a cloud management tool that focuses on reporting and generating recommendations for optimizing cloud costs It started as a cloud security platform and later expanded into cost management spanning over cost tracking optimization and resource inventory CAST AI vs CloudCheckr quick feature comparisonFeatureCAST AI CloudCheckrSupported platforms AWSGoogle CloudMicrosoft Azure coming soon Cost allocation and visibility Detailed cost allocationCost reportingReal time alertsCost view across multi cloud limited Cost optimization and automation Automated rightsizingHorizontal pod autoscaling and node autoscalingNode autoscalingCluster scheduling and terminationAutomatic bin packing Spot instance automationFull multi cloud optimizationDetailed feature comparison of CloudCheckr and CAST AICost allocation and visibilityCost optimization and automationSpot instance automationFull multi cloud optimizationPricingSummary Cost allocation and visibilityCost allocation and reporting In CAST AI costs are broken down at the project cluster namespace and deployment levels Teams can track expenses down to individual microservices and then create a comprehensive estimate of their cluster costs to help with planning CAST AI employs universal metrics that are compatible with any cloud service provider The cost allocation functionality in CAST AI operates per cluster and per node The platform is planning to extend the reported cost dimensions to control plane network egress storage and others The Capability for ongoing cloud cost reporting is also in the works CloudCheckr offers a detailed view of cloud cost allocation data in its Cost Changes Report Teams can get instant visibility into their expenses across the supported cloud service providers The Cost Summary Report on the other hand displays cloud costs over time in the monthly format allowing teams to interact with the data and improve the accuracy of their billing Real time alertingThe CAST AI team is currently working on the real time alerting functionalities that notify users when their cloud spend passes the set threshold to eliminate the risk of a service bill spiraling out of control CloudCheckr includes an alerting feature paired with cloud governance to give teams more control over their costs and help them avoid any surprises Cost view across multi cloudSince many companies use more than one cloud platform today multi cloud support is necessary for supporting any cost optimization effort Allocating expenses for multi cloud environments is difficult but CAST AI makes it much easier thanks to its extended multi cloud capabilities The platform solves cross cloud visibility by using Grafana and Kibana universal metrics that work with any cloud service provider CloudCheckr comes with a report that shows cloud spend across various cloud services and providers but compared to CAST AI its multi cloud functionality is more limited Cost optimization and automationCAST AI fully automated cost optimizationAutomated rightsizing with AI driven instance selection CAST AI uses artificial intelligence to select the optimal instance types and sizes and match an application s needs while also reducing cloud expenses When a cluster requires more nodes the platform s automation engine chooses instances that provide the best performance at the lowest cost Teams don t have to do anything extra because everything is automated Given that picking the same instance shape for every node in a cluster can easily lead to overprovisioning the platform includes multi shape cluster creation As a result CAST AI provides an optimal combination of different instance types in line with the application s needs Horizontal pod autoscaling and node autoscalingTo help teams avoid overprovisioning their infrastructures CAST AI automates pod scaling parameters The Horizontal Pod Autoscaler uses business metrics to generate the ideal number of the required pod instances If there is no work to be done the feature scales the replica count of your pods up and down eventually scaling to zero and eliminating all pods CAST AI also guarantees that the number of nodes in use always suits the application s requirements autonomously scaling nodes up and down Cluster scheduling and terminationTo help teams avoid paying for resources they don t utilize CAST AI automatically stops and resumes clusters created within the platform Automatic bin packing Teams face a cost challenge with Kubernetes since it distributes applications equally across a cluster with no regard for how cost effective this design is CAST AI modifies the default pod scheduling behavior and uses automatic bin packing to maximize savings according to set preferences Fewer nodes bring greater cost savings CloudCheckr recommendations and limited automationDetailed reports and recommendationsCloudCheckr uses predictive analytics to generate resource purchasing recommendations for its users The platform identifies wasted resources and provides resource re sizing recommendations to reduce costs To accomplish that CloudCheckr employs Best Practices checks that check for idle resources unused instances and mismatches in EC Reserved Instances and more The engine generates recommendations only for rightsizing and snapshot cleanups Another interesting reporting feature is the Savings Plan Recommendations report that helps teams to check which services they deployed could be covered by their Savings Plans create customize purchase recommendations The platform s approach to cost optimization relies on policy based management and focuses on reporting problems rather than offering automated solutions Still CloudCheckr comes with a few helpful automation features Automation in CloudCheckr The platform automatically reallocates resizes and modifies Reserved Instances It keeps historical data for tracking RI inventory throughout the entire lifecycle and helps teams make future purchases CloudCheckr automatically starts and stops EC instances so they run only when needed The platform automatically enforces tag or terminate policies for better infrastructure control Spot instance automationSpot Instances can generate savings of up to off the On Demand pricing However there is a catch the cloud provider can terminate the insurance at any time That s why successful use of Spot Instances depends on automation CAST AI ensures that the replacement of interrupted spot instances is fully automated As a result teams don t have to worry about their applications running out of space The platform always searches for optimal instance options and spins up instances in a fraction of a second to ensure high availability CloudCheckr doesn t automate spot instance selection and replacement at the moment Full multi cloud optimizationAs more businesses turn to multiple cloud services to access best in class services and avoid disasters the need to track manage and optimize costs across providers is more important than ever CAST AI meets this requirement with a host of multi cloud features Active Active Multi Cloud it replicates applications and data across multiple cloud services so if one of them fails others keep applications working and guarantee business continuity Global Server Load Balancing CAST AI distributes traffic evenly across all the clouds in use always picking endpoints that are up and healthy Multi cloud visibility the platform simplified cost allocation across cloud services by using universal metrics from Grafana and Kibana CloudCheckr currently doesn t support multi cloud functionality and only offers cost visibility for AWS Microsoft Azure and Google Cloud PricingCAST AI users can start with the free Cluster Analyzer to check whether they can save on their cloud services The read only agent examines the configuration and provides actionable recommendations You can apply them manually or use automated cost optimization features in which case you ll have to select one of two plans Growth and Enterprise CAST AI guarantees at least a reduction in costs CloudCheckr doesn t provide pricing information on its website However according to AWS Marketplace as of it charges of cloud spend and monthly minimum Summary CAST AI vs CloudCheckrOverall winnerCAST AIBoth CloudCheckr and CAST AI are great cost optimization platforms that facilitate cost allocation monitoring management and optimization But while CloudCheckr offers recommendations and some automation features CAST AI comes with a rich array of automated solutions that guarantee cost savings Combined with unique multi cloud functionality and cloud native architecture CAST AI s comprehensive automation features position the platform at the top of cloud cost optimization platforms Estimate the savings that you could get with CAST AI by starting with the free Cluster Analyzer |
2021-09-07 08:12:37 |
海外科学 |
BBC News - Science & Environment |
Climate change: Green groups call for COP26 postponement |
https://www.bbc.co.uk/news/science-environment-58472566?at_medium=RSS&at_campaign=KARANGA
|
nations |
2021-09-07 08:13:55 |
海外科学 |
BBC News - Science & Environment |
Climate change: Dragonflies spread north in warming world |
https://www.bbc.co.uk/news/science-environment-58462181?at_medium=RSS&at_campaign=KARANGA
|
ireland |
2021-09-07 08:36:39 |
医療系 |
医療介護 CBnews |
米ノババックス製ワクチン、1.5億回分契約-厚労省 |
https://www.cbnews.jp/news/entry/20210907165436
|
厚生労働省 |
2021-09-07 17:10:00 |
海外ニュース |
Japan Times latest articles |
With new leader to take reins, Japan eyes extending COVID-19 emergency in hot spots |
https://www.japantimes.co.jp/news/2021/09/07/national/coronavirus-emergency-extension-leader/
|
successor |
2021-09-07 17:15:11 |
ニュース |
BBC News - Home |
Social care: PM to unveil overhaul of sector in England |
https://www.bbc.co.uk/news/uk-politics-58469872?at_medium=RSS&at_campaign=KARANGA
|
rises |
2021-09-07 08:41:47 |
ニュース |
BBC News - Home |
BBC's director of news Fran Unsworth to leave the corporation |
https://www.bbc.co.uk/news/entertainment-arts-58473208?at_medium=RSS&at_campaign=KARANGA
|
affairs |
2021-09-07 08:22:34 |
ニュース |
BBC News - Home |
Police Scotland admits failures over M9 crash death |
https://www.bbc.co.uk/news/uk-scotland-tayside-central-58474385?at_medium=RSS&at_campaign=KARANGA
|
death |
2021-09-07 08:53:32 |
ニュース |
BBC News - Home |
I should have been banned forever, says online troll who sent racist message to England's Saka |
https://www.bbc.co.uk/news/uk-58466849?at_medium=RSS&at_campaign=KARANGA
|
I should have been banned forever says online troll who sent racist message to England x s SakaOne racist troll tracked down by the BBC says social media companies should have banned him for longer |
2021-09-07 08:15:06 |
ニュース |
BBC News - Home |
'I'm going to have nine million death threats' - Rogers speaks out on social media abuse after defeat |
https://www.bbc.co.uk/sport/tennis/58472698?at_medium=RSS&at_campaign=KARANGA
|
x I x m going to have nine million death threats x Rogers speaks out on social media abuse after defeatAmerican Shelby Rogers voices concerns about death threats she expects to receive on social media after her US Open fourth round defeat by Emma Raducanu |
2021-09-07 08:24:40 |
ビジネス |
ダイヤモンド・オンライン - 新着記事 |
「PHCホールディングス」のIPO情報総まとめ! スケジュールから幹事証券、注目度、銘柄分析、 他のヘルスケア機器開発・販売企業との比較や予想まで解説! - IPO株の銘柄分析&予想 |
https://diamond.jp/articles/-/281628
|
|
2021-09-07 17:30:00 |
ビジネス |
不景気.com |
岩手・宮古のスーパー「宮ビル」運営の「ミナック」が事業停止 - 不景気.com |
https://www.fukeiki.com/2021/09/miyabiru.html
|
事業停止 |
2021-09-07 08:37:16 |
GCP |
Google Cloud Platform Japan 公式ブログ |
Cloud Data Fusion によるコードフリーのアプローチで Salesforce のデータを BigQuery に読み込む方法 |
https://cloud.google.com/blog/ja/products/data-analytics/load-salesforce-data-to-bigquery-with-cloud-data-fusion/
|
DataFusionプラグインでは、必要に応じてPushTopicを事前に作成することもできます。 |
2021-09-07 10:00:00 |
GCP |
Google Cloud Platform Japan 公式ブログ |
クラウド移行への道: Storage Transfer Service を使用してオンプレミスから Google Cloud に移行するためのベスト プラクティス |
https://cloud.google.com/blog/ja/products/storage-data-transfer/best-practices-for-large-scale-migrations-to-google-cloud/
|
この場合、gsutilがStorageTransferServiceエージェントと同じオンプレミスVMで使用できることも確認する必要があります。 |
2021-09-07 09:00:00 |
北海道 |
北海道新聞 |
川之江高の監督ら謹慎、体罰で 学生野球審査室会議 |
https://www.hokkaido-np.co.jp/article/586652/
|
学生野球 |
2021-09-07 17:04:00 |
ビジネス |
東洋経済オンライン |
ネットの検索結果が「投票」に及ぼす恐ろしい影響 「政治とアルゴリズム」のスキャンダル事件とは | インターネット | 東洋経済オンライン |
https://toyokeizai.net/articles/-/447766?utm_source=rss&utm_medium=http&utm_campaign=link_back
|
政治活動 |
2021-09-07 17:30:00 |
ニュース |
Newsweek |
英・音楽フェスで4700人が感染、デルタ株亜種「フェスティバル株」が発生? |
https://www.newsweekjapan.jp/stories/world/2021/09/4700-1.php
|
英・音楽フェスで人が感染、デルタ株亜種「フェスティバル株」が発生万人以上参加のイベント後、若年層でコロナ拡大英国では、年の音楽フェスティバルは新型コロナウイルスでほとんどがキャンセルになったが、今年は月に大規模なものがいくつか開催された。 |
2021-09-07 17:23:38 |
仮想通貨 |
BITPRESS(ビットプレス) |
国内暗号資産マーケットデータ(2018年9月〜2021年7月)-JVCEA開示データより- |
https://bitpress.jp/count2/3_8_12391
|
|
2021-09-07 17:02:10 |
IT |
週刊アスキー |
新具材「イカ様ボンバー」とは一体…! 「日清焼そばU.F.O. 濃い濃い海鮮イカ味焼そば 」 |
https://weekly.ascii.jp/elem/000/004/068/4068425/
|
日清焼そば |
2021-09-07 17:30:00 |
GCP |
Cloud Blog JA |
Cloud Data Fusion によるコードフリーのアプローチで Salesforce のデータを BigQuery に読み込む方法 |
https://cloud.google.com/blog/ja/products/data-analytics/load-salesforce-data-to-bigquery-with-cloud-data-fusion/
|
DataFusionプラグインでは、必要に応じてPushTopicを事前に作成することもできます。 |
2021-09-07 10:00:00 |
GCP |
Cloud Blog JA |
クラウド移行への道: Storage Transfer Service を使用してオンプレミスから Google Cloud に移行するためのベスト プラクティス |
https://cloud.google.com/blog/ja/products/storage-data-transfer/best-practices-for-large-scale-migrations-to-google-cloud/
|
この場合、gsutilがStorageTransferServiceエージェントと同じオンプレミスVMで使用できることも確認する必要があります。 |
2021-09-07 09:00:00 |
コメント
コメントを投稿