機械学習編1(基礎編)では、最も初歩的な分類器である単純パーセプトロンを題材に、機械学習の基本について勉強しました。機械学習編2(実用編)では、実問題に機械学習を適用する上でのコツや、各種の機械学習アルゴリズムの使い分け、高次元データへの対処法、といったトピックについて解説していきます。 実問題に機械学習を適用する タスクを定義する データを特徴ベクトルに変換する 評価方法を決める 正解データの正例と負例は均等に ベースラインとなる手法を実装する 実データに向き合うときの心構え 機械学習のワークフロー 1. 前処理 データセット作成 サンプリング 特徴抽出 欠損値・欠測値への対応 値のスケーリ…
05.10.2016 10:46
=======================================
http://ift.tt/1abnmbU
October 05, 2016 at 05:46PM
=======================================
http://ift.tt/1abnmbU
October 05, 2016 at 05:46PM
コメント
コメントを投稿