この章では機械学習について、Webサービスの開発で必要とされる知識を中心に、とくに自然言語処理にフォーカスしながら解説します。 Webサービス開発と機械学習 実現困難な機能の例 闇雲な実装 もう少しましな実装 機械学習によるパラメータ決定 分類問題のための機械学習手法 パーセプトロン 判別アルゴリズム 学習アルゴリズム 特徴量のとり方 形態素解析 量をともなう特徴 組み合わせ特徴量 モデル 機械学習の種類 教師あり学習 分類 (質的変数の予測) 回帰 (量的変数の予測) 教師あり学習でのデータセット 教師なし学習 クラスタリング 次元削減(次元圧縮) 頻出パターンマイニング 異常値検出 アルゴ…
05.10.2016 10:47
=======================================
http://ift.tt/1abnmbU
October 05, 2016 at 05:47PM
=======================================
http://ift.tt/1abnmbU
October 05, 2016 at 05:47PM
コメント
コメントを投稿