IT |
気になる、記になる… |
Belkin、Thunderbolt4対応の新型ドック「Belkin CONNECT Pro Thunderbolt 4 Dock」を発表 |
https://taisy0.com/2021/11/19/148805.html
|
belkin |
2021-11-19 02:34:57 |
TECH |
Engadget Japanese |
最大3日駆動可能な「moto g power」に3世代目登場 SoCやカメラ性能が刷新 |
https://japanese.engadget.com/moto-g-power-023043550.html
|
motogpower |
2021-11-19 02:30:43 |
TECH |
Engadget Japanese |
山でも街でも機能性抜群でスタイリッシュに使える、大容量スリングバッグ「Slash+」 |
https://japanese.engadget.com/slash-plus-021521634.html
|
山でも街でも機能性抜群でスタイリッシュに使える、大容量スリングバッグ「Slash」▌SlashスラッシュプラスSlashスラッシュプラスは、アーバンスタイルアウトドアスタイル、両方のデザインと機能を兼ね備えたスリングバッグです。 |
2021-11-19 02:15:21 |
TECH |
Engadget Japanese |
Pixel 6の充電に関する詳細をGoogleが公開 充電速度の低下はバッテリー残量に合わせた「仕様」 |
https://japanese.engadget.com/pixel-6-charge-020026768.html
|
google |
2021-11-19 02:00:26 |
IT |
ITmedia 総合記事一覧 |
[ITmedia Mobile] Google、「Pixel 6」シリーズの充電が遅いという苦情に公式説明 |
https://www.itmedia.co.jp/mobile/articles/2111/19/news091.html
|
google |
2021-11-19 11:44:00 |
IT |
ITmedia 総合記事一覧 |
[ITmedia ビジネスオンライン] 松屋、初めての冷凍自動販売機を設置 非接触ニーズに対応 |
https://www.itmedia.co.jp/business/articles/2111/19/news088.html
|
itmedia |
2021-11-19 11:28:00 |
IT |
ITmedia 総合記事一覧 |
[ITmedia ビジネスオンライン] 転職をして「給与」は上がった? 厚労省が調査 |
https://www.itmedia.co.jp/business/articles/2111/19/news085.html
|
itmedia |
2021-11-19 11:25:00 |
TECH |
Techable(テッカブル) |
1箱10kg以上を数十箱! 人力台車で2~3人がかりの移動が、キャベツ搬送ロボットで負担激減 |
https://techable.jp/archives/166922
|
deepvalley |
2021-11-19 02:00:34 |
Google |
Google Japan Blog |
次世代の女性が IT を通じて活躍する社会をめざして |
http://japan.googleblog.com/feeds/5241881185832765256/comments/default
|
次世代の女性がITを通じて活躍する社会をめざしてGoogleはこれまで、組織における女性のリーダーシップの推進をサポートするプログラムの提供や、子どもたちがワクワクしながらコンピュータサイエンスを学校内外で学ぶことを支援するnbspSTEAMCareerMagazinenbspの発行、女子中高生向けにコンピューターサイエンスを身近に感じてもらうためのプログラムnbspMindtheGapnbspなど、誰もが平等に活躍できる社会への推進を目指して様々な取り組みを行ってきました。 |
2021-11-19 11:01:00 |
python |
Pythonタグが付けられた新着投稿 - Qiita |
リモートワークに役立つ!?SlackBotを使って言論統制しよう! |
https://qiita.com/hayahaya2/items/421af83c6e7ac4d242e9
|
締め切りに追われる作家さんや、残業を強いられるサラリーマン、感謝を伝えられないシャイな人などなどさまざまなニーズに合わせてあなたにあった言論統制Botを制作できますこのSlackBotを作成して言論統制し、不快なチャットからはおさらば快適なチャットには感謝をそして、平和なSlackを手に入れましょうから丁寧に解説していくので初心者の方も安心してくださいそれでは、楽しい楽しいBot制作に取り組んでいきましょう今回作成するもの今回作成するBotは、マイナスの言葉がチャットに書き込まれると、削除し、逆にプラスの言葉が書き込まれるとリアクションで感謝を伝えてくれるBotです実際にSlackでどのように動くのか見てみましょう主に使用するもの今回は「WebAPImethods」を利用して、SlackBotの機能を拡張していきます。 |
2021-11-19 11:55:04 |
python |
Pythonタグが付けられた新着投稿 - Qiita |
Windows10のpyenvでデジタル署名のエラーの対応(仮) |
https://qiita.com/yuzukaki/items/92f1806ca385951b60e6
|
GUIでプロパティの許可するをチェックするのはあまりかっこよくないのですが、セキュリティ的には正しいと思えるので、いったんこれで良しとしちゃいます。 |
2021-11-19 11:18:12 |
Program |
[全てのタグ]の新着質問一覧|teratail(テラテイル) |
WordPressで「下書き」「プレビュー」「公開」ボタンを押せるようにしたい |
https://teratail.com/questions/370066?rss=all
|
色々試したみたのですが、どん詰まり状態です。 |
2021-11-19 11:56:46 |
Program |
[全てのタグ]の新着質問一覧|teratail(テラテイル) |
PHPでデータベースに画像を保存してアップロードするやり方がわからない。 |
https://teratail.com/questions/370065?rss=all
|
PHPでデータベースに画像を保存してアップロードするやり方がわからない。 |
2021-11-19 11:49:58 |
Program |
[全てのタグ]の新着質問一覧|teratail(テラテイル) |
エクセル 左右の表で存在しないデータを抽出する |
https://teratail.com/questions/370064?rss=all
|
|
2021-11-19 11:36:10 |
Program |
[全てのタグ]の新着質問一覧|teratail(テラテイル) |
ServletでSQLの結果をロジックからコントローラに返却する仕様に変更したいです。 |
https://teratail.com/questions/370063?rss=all
|
ServletでSQLの結果をロジックからコントローラに返却する仕様に変更したいです。 |
2021-11-19 11:32:57 |
Program |
[全てのタグ]の新着質問一覧|teratail(テラテイル) |
unity Pheisics.raycastでlayerMaskを設定したのですが上手くいきません |
https://teratail.com/questions/370062?rss=all
|
unityPheisicsraycastでlayerMaskを設定したのですが上手くいきません初めまして、先日からunityを始めた現在大学二年生のものです。 |
2021-11-19 11:31:34 |
Program |
[全てのタグ]の新着質問一覧|teratail(テラテイル) |
unity 3D 切り取り |
https://teratail.com/questions/370061?rss=all
|
ゲームではDで彫刻ができるイメージで、物体削られる側対象A削る側はblenderで出力されたobjが使えればよいと考えています。 |
2021-11-19 11:30:01 |
Program |
[全てのタグ]の新着質問一覧|teratail(テラテイル) |
JsonNode クローズしたほうが良いかどうか教えてください |
https://teratail.com/questions/370060?rss=all
|
JsonNodeクローズしたほうが良いかどうか教えてくださいreadTreeを使用しファイルの操作を行った場合close行う必要はあるのかまた、行うとしたらどのようなコードになるのか教えていただきたいです。 |
2021-11-19 11:29:44 |
Program |
[全てのタグ]の新着質問一覧|teratail(テラテイル) |
flaskでpytestが実行できない |
https://teratail.com/questions/370059?rss=all
|
flaskでpytestが実行できない下記のフォルダ構造で、pytestの単体テストを実行しようとしています。 |
2021-11-19 11:25:47 |
Program |
[全てのタグ]の新着質問一覧|teratail(テラテイル) |
TkInter: フレームへのWIDGET配置・レイアウトが思い通りにならない |
https://teratail.com/questions/370058?rss=all
|
TkInterフレームへのWIDGET配置・レイアウトが思い通りにならない以下のフォーム内で緑色のラインで示したコンボボックス・チェックボックス・テキストボックスの配置が希望どおりにならずこまっています。 |
2021-11-19 11:19:22 |
Program |
[全てのタグ]の新着質問一覧|teratail(テラテイル) |
pythonでフルパス名からファイル名を取り出す方法 |
https://teratail.com/questions/370057?rss=all
|
dataframe |
2021-11-19 11:17:48 |
Program |
[全てのタグ]の新着質問一覧|teratail(テラテイル) |
[エクセルVBA]ある範囲の値を取得・格納して一括で別シートに貼り付ける |
https://teratail.com/questions/370056?rss=all
|
エクセルVBAある範囲の値を取得・格納して一括で別シートに貼り付ける前提・実現したいこと図のようなデータベースがあり、それぞれのシートの値を配列に取得・格納した後に図のようにシートへ一括で貼り付けたいまた、A列B列に別の値を貼り付けたい※都度シートへ貼り付けではなくFor文から抜け出した後、一括で貼り付けを行いたいです。 |
2021-11-19 11:15:49 |
Program |
[全てのタグ]の新着質問一覧|teratail(テラテイル) |
C言語で四則演算 実行後、数字を認識してもらう方法 |
https://teratail.com/questions/370055?rss=all
|
Notepadを起動し、ファイルを開くから先ほどの「c」を開き、下のプログラムを記入。 |
2021-11-19 11:15:07 |
Program |
[全てのタグ]の新着質問一覧|teratail(テラテイル) |
Python: requests.get(url)でurlに&0Dが出現してしまう |
https://teratail.com/questions/370054?rss=all
|
PythonrequestsgeturlでurlにampDが出現してしまう前提・実現したいことPythonにて、アメリカの財務系データベースEDGARをスクレイピングしたいです。 |
2021-11-19 11:15:06 |
Program |
[全てのタグ]の新着質問一覧|teratail(テラテイル) |
swiftUIで画面のどこかをクリックで次の処理をしたい |
https://teratail.com/questions/370053?rss=all
|
button |
2021-11-19 11:13:43 |
Program |
[全てのタグ]の新着質問一覧|teratail(テラテイル) |
鶴亀算の応用問題 4つの値での考察 |
https://teratail.com/questions/370052?rss=all
|
鶴亀算の応用問題つの値での考察現在、下記問題に取り組んでおりますが難航しており、ご教授お願い致します。 |
2021-11-19 11:13:26 |
Program |
[全てのタグ]の新着質問一覧|teratail(テラテイル) |
history.replaceStateで追加したURLを削除するには |
https://teratail.com/questions/370051?rss=all
|
aiueo |
2021-11-19 11:05:24 |
Ruby |
Railsタグが付けられた新着投稿 - Qiita |
uninitialized constant Rack::Protection |
https://qiita.com/gremito/items/67c1357ccdd74b87f8dd
|
configroutesrbrequiresidekiqwebSidekiqWebsetsessionsecretRailsapplicationsecretssecretkeybaseSidekiqWebsetsessionsRailsapplicationconfigsessionoptionsSidekiqWebclassevaldouseRackProtectionoriginwhitelistresolveRackProtectionHttpOriginendGemfilegemsidekiqgt例えばRailsを起動するとrailssExitingTracebackmostrecentcalllasthomewebconfigroutesrbinblocklevelsinltmaingtuninitializedconstantRackProtectionNameError原因年前の対応によりv以降からrackprotectionの依存を無くした対応が入ったため。 |
2021-11-19 11:44:42 |
Ruby |
Railsタグが付けられた新着投稿 - Qiita |
Railsのエラーメッセージの階層、インデントの書き方 |
https://qiita.com/daichiccchi/items/464fedf26b30d521e097
|
なのでインデントを修正。 |
2021-11-19 11:44:21 |
海外TECH |
DEV Community |
Derive Insights from AWS Lake House | AWS White Paper Summary |
https://dev.to/awsmenacommunity/derive-insights-from-aws-lake-house-aws-white-paper-summary-2p2m
|
Derive Insights from AWS Lake House AWS White Paper Summary IntroductionOrganizations collect and analyze increasing amounts of data to make better decisions as quickly as changes occur Traditional on premises solutions for data storage data management and analytics can no longer keep pace Data siloes that aren t built to work well together make it difficult to consolidate data to perform comprehensive and efficient analytics This limits an organization s agility ability to derive more insights and value from its data and capability to adopt more sophisticated analytics tools and processes as its needs evolve Organizations often build data warehouse and data lake solutions in isolation from each other each having its own separate data ingestion storage management and governance layers These disjointed efforts to build separate data warehouse and data lake ecosystems often end up creating data and processing silos data integration complexity excessive data movement and data consistency issues These can lead to delays and increased cost of data driven decisions and prevent the deeper insights that come when you analyze all your relevant data together What is a Lake House architecture Many organizations are moving their data from various silos into a data lake where they have a single place to apply machine learning and analytics The vast majority of data lakes are built on Amazon Simple Storage Service Amazon S At the same time customers are leveraging purpose built analytics stores that are optimized for specific use cases Customers want the freedom to move data between their centralized data lakes and the surrounding purpose built analytics stores in a seamless secure and compliant way to get insights with speed and agility We call this modern approach to analytics Lake House architecture Lake House architecture is an evolution from data warehouse and data lake based solutions The following table lists this evolution from data and performance characteristics Why use AWS for Lake House analytics Customers build databases data warehouses and data lake solutions in isolation from each other each having its own separate data ingestion storage management and governance layers These disjointed efforts to build separate data stores often end up creating data silos data integration complexities excessive data movement and data consistency issues These issues prevent customers from getting deeper insights To overcome these issues and easily move data around AWS introduced a Lake Houseapproach AWS provides a broad platform of managed services to help you build secure and seamlessly scale end to end data analytics applications quickly by using a Lake House approach There is no hardware to procure no infrastructure to maintain and scaleーonly what you need to collect store process and analyze your data AWS offers analytical solutions specifically designed to handle this growing amount of data and provide insight into your business AWS purpose built analytics servicesAWS gives you the broadest and deepest portfolio of purpose built analytics services including Amazon Athena Amazon EMR Amazon Elasticsearch Service Amazon Kinesis and Amazon Redshift for your unique analytics use cases These services are all designed to be the best which means you never have to compromise on performance scale or cost when using them Scalable data lakesTens of thousands of customers run their data lakes on AWS Setting up and managing data lakes today involves a lot of manual and time consuming tasks AWS Lake Formation automates these tasks so you can build and secure your data lake in days instead of months For your data lake storage Amazon S is the best place to build a data lake because it has Unmatched of durability and availability The best security compliance and audit capabilities with object level audit logging and access control The most flexibility with five storage tiers The lowest cost with pricing that starts at less than per TB per month S gives you robust capabilities to manage access cost replication and data protection Performance and cost effectivenessIn addition to industry leading price performance for analytics services S intelligent tiering saves you up to on storage cost for data stored in your data lake Amazon EC provides access to an industry leading choice of over instance types up to billions of bits per second Gbps network bandwidth and the ability to choose between on demand reserved and spot instances With Amazon Redshift RA instances with managed storage you can choose the number of nodes based on your performance requirements and pay only for the managed storage that you use Advanced Query Accelerator AQUA is an analytics query accelerator for Amazon Redshift that uses custom designed hardware to speed up queries that scan large datasets Seamless data movementAs the data in your data lakes and purpose built data stores continues to grow you need to be able to easily move a portion of that data from one data store to another AWS enables you to combine move and replicate data across multiple data stores andyour data lake Centralized governanceOne of the most important pieces of a modern analytics architecture is the ability for customers to authorize manage and audit access to data This can be challenging because managing security access control and audit trails across all of the data stores in your organization is complex time consuming and error prone With capabilities like centralized access control and policies and column level filtering of data no other analytics provider gives you the governance capability to manage access to all of your data across your data lake and your purpose built data stores from a single place With capabilities like centralized access control and policies combined with column and row level filtering AWS gives you the fine grained access control and governance to manage access to data across a data lake and purpose built data stores from a single point of control Lake House architecture on AWSAs data in data lakes data warehouses and purpose built stores continues to grow it becomes harder to move all this data around We call this data gravity To make decisions with speed and agility you need to be able to use a central data lake and aring of purpose built data services around that data lake You also need to acknowledge data gravity by easily moving the data you need between these data stores in a secure and governed way AWS calls this modern approach to analytics the Lake HouseArchitecture Analytics patterns using a Lake House approach on AWSMany organizations are moving all their data from various silos into a single location often called a data lake to perform analytics and ML These same companies also store data in purpose built data stores for the performance scale and cost advantages they provide for specific use cases Lake House architecture on AWS provides a strategic vision of how multiple AWS data and analytics services can be combined into a multi purpose data processing and analytics environment There are the three analytics patterns you can derive insights from by using a Lake House approach on AWS Inside out data movementOutside in data movementData movement around the perimeter Derive insights with inside out data movementTo get the most from your data lakes and these purpose built stores you need to move data between these systems easily For example clickstream data from web applications can be collected directly in a data lake and a portion of that data can bemoved out to a data warehouse for daily reporting We think of this concept as insideout data movement Derive real time event based visualization insights from your Lake house with Amazon Redshift and Amazon QuickSightThe following diagram illustrates the Lake House inside out data movement with Amazon Redshift and Amazon QuickSight to perform data visualization insights Derive persona centric insights from your Lake House with AWS Glue DataBrew Amazon Athena Amazon Redshift and Amazon QuickSightThe following diagram illustrates the Lake House inside out data movement with AWS Glue DataBrew Amazon Athena Amazon Redshift and Amazon QuickSight to perform persona centric data analytics Derive insights with outside in data movementYou can also move data in the other direction from the outside in For example you can copy query results for sales of products in a given Region from your data warehouse into your data lake to run product recommendation algorithms against a larger data set using machine learning Think of this concept as outside in datamovement Derive insights from Amazon DynamoDB data for real time prediction with Amazon SageMakerThe following diagram illustrates the Lake House outside in data movement with DynamoDB data to derive personalized recommendations Derive insights from Amazon Aurora data with Apache Hudi AWS Glue AWS DMS and Amazon RedshiftThe following diagram illustrates the Lake House outside in data movement with Amazon Aurora Postgres changed data to derive analytics Derive insights with moving data around the perimeterIn other situations you want to move data from one purpose built data store to another data movement around the perimeter For example you may copy the product catalog data stored in your database to your search service to make it easier to look through your product catalog and offload the search queries from the database We think of this concept as data movement around the perimeter Derive insights from your data lake data warehouse and operational databasesThe following diagram illustrates the “moving the data around the perimeter Lake House approach with S Amazon Redshift Amazon Aurora PostgreSQL and Amazon EMR to derive analytics Derive insights from your data lake data warehouse and purpose built analytics stores by using Glue Elastic ViewsThe following diagram illustrates the “moving the data around the perimeter Lake House approach with AWS Glue Elastic Views to derive insights Key benefitsLake House architecture on AWS provides the following key benefits Unified analytics across operational data warehouse and data lakeDemocratizes machine learning with SQL no ETL neededEmpowers all personas ーuse best fit analytics servicesSecurity compliance and audit capabilities across the data lakeCost effective durable storage with global replication capabilitiesA comprehensive set of integrated tools enables every user equallyCentralized management of fine grained permissions empowers security officersSimplified ingestion and cleaning enables data engineers to build faster ConclusionA Lake House architecture built on a portfolio of purpose built services helps you quickly get insight from all your data to all your users It enables you to build for the future so you can easily add new analytic approaches and technologies as they becomeavailable ReferenceOriginal paper |
2021-11-19 02:19:33 |
Apple |
AppleInsider - Frontpage News |
Apple TV+ original 'Hello Tomorrow!' adds Jacki Weaver to cast |
https://appleinsider.com/articles/21/11/19/apple-tv-original-hello-tomorrow-adds-jacki-weaver-to-cast?utm_medium=rss
|
Apple TV original x Hello Tomorrow x adds Jacki Weaver to castApple TV is filling out the cast of retro future dramedy Hello Tomorrow with Oscar nominee Jacki Weaver reportedly set to star opposite Billy Crudup in the half hour show Weaver who was nominated for Academy Awards for her work in Silver Linings Playbook and Animal Kingdom is set to play Barbara Billings the manipulative mother of Crudup s character reports Deadline Hello Tomorrow follows the story of Jack Crudup who hawks lunar timeshares with a group of fellow traveling salesmen Jack is described as a salesman of great talent and ambition whose unshakable faith in a brighter tomorrow inspires his co workers and revitalizes his desperate customers but threatens to leave him dangerously lost in the very dream that sustains him Read more |
2021-11-19 02:53:11 |
Apple |
AppleInsider - Frontpage News |
Apple's Self Service Repair unlikely to impact iPhone upgrade cycle, study finds |
https://appleinsider.com/articles/21/11/19/apples-self-service-repair-unlikely-to-impact-iphone-upgrade-cycle-study-finds?utm_medium=rss
|
Apple x s Self Service Repair unlikely to impact iPhone upgrade cycle study findsA study published on Thursday takes a closer look at the impact Apple s new Self Service Repair might have on iPhone s average lifecycle Apple this week announced the Self Service Repair program an initiative that will allow customers access to parts and tools to perform common iPhone and iPhone repairs like display battery and camera replacements The company plans to expand support to M Macs at a later date It was a surprising about face for the tech giant which for years has railed against the right to repair movement citing consumer safety and security risks Read more |
2021-11-19 02:55:42 |
Apple |
AppleInsider - Frontpage News |
Apple TV+ nets Grateful Dead biopic directed by Martin Scorsese, starring Jonah Hill |
https://appleinsider.com/articles/21/11/18/apple-tv-nets-grateful-dead-biopic-directed-by-martin-scorsese-starring-jonah-hill?utm_medium=rss
|
Apple TV nets Grateful Dead biopic directed by Martin Scorsese starring Jonah HillMartin Scorsese and Jonah Hill will reunite in an Apple TV musical biopic about the Grateful Dead a major win for the fledgling streaming service Source Getty Images via FortuneScorsese will direct and produce the as yet untitled film with Hill signed to star as the group s frontman Jerry Garcia reports Deadline Hill will produce for his Strong Baby company with Matt Dines Read more |
2021-11-19 02:59:11 |
海外TECH |
CodeProject Latest Articles |
Creating a OneNote Markdown Converter |
https://www.codeproject.com/Articles/5317371/Creating-a-OneNote-Markdown-Converter
|
Creating a OneNote Markdown ConverterIn this article of this series we ll use the Graph API client to consume OneNote documents through a microservice that allows them to be converted into Markdown format |
2021-11-19 02:43:00 |
金融 |
生命保険協会 |
福祉巡回車を寄贈しました(愛媛県協会) |
https://www.seiho.or.jp/info/social/2021/cr_20211119_3.html
|
福祉 |
2021-11-19 12:00:00 |
金融 |
生命保険協会 |
介護福祉士・保育士養成給付型奨学生に決定通知書の授与を行いました(長崎県協会) |
https://www.seiho.or.jp/info/social/2021/cr_20211119_1.html
|
介護福祉士 |
2021-11-19 12:00:00 |
金融 |
生命保険協会 |
障がい者支援助成金を贈呈しました(愛媛県協会) |
https://www.seiho.or.jp/info/social/2021/cr_20211119_4.html
|
障がい者 |
2021-11-19 12:00:00 |
金融 |
生命保険協会 |
和歌山県に新型コロナウイルス感染症対策支援の寄付金を贈呈しました(和歌山県協会) |
https://www.seiho.or.jp/info/social/2021/cr_20211119_2.html
|
和歌山県 |
2021-11-19 12:00:00 |
金融 |
ニュース - 保険市場TIMES |
エヌエヌ生命、「いい夫婦の日」意識調査を実施 |
https://www.hokende.com/news/blog/entry/2021/11/19/120000
|
「いい夫婦の日」意識調査と題されたこの調査では、夫婦間の会話について問う設問が多く、結果、夫婦の平日の会話時間は平均で時間分であり、家族や仕事、食事についての会話が多いことがわかった。 |
2021-11-19 12:00:00 |
ニュース |
ジェトロ ビジネスニュース(通商弘報) |
欧州委、森林破壊防止のためのデューディリジェンス義務化規則案を発表 |
https://www.jetro.go.jp/biznews/2021/11/4dccde41219af5b7.html
|
森林破壊 |
2021-11-19 02:50:00 |
海外ニュース |
Japan Times latest articles |
First known COVID-19 case was vendor at Wuhan market, scientist claims |
https://www.japantimes.co.jp/news/2021/11/19/asia-pacific/covid-wuhan-market-patient/
|
First known COVID case was vendor at Wuhan market scientist claimsThe report will revive the debate over whether the pandemic started with a spillover from wildlife sold at the market a leak from a Wuhan |
2021-11-19 11:25:17 |
ニュース |
BBC News - Home |
Nadine Dorries: Culture secretary says social media has been hijacked |
https://www.bbc.co.uk/news/entertainment-arts-59305080?at_medium=RSS&at_campaign=KARANGA
|
battle |
2021-11-19 02:22:51 |
ニュース |
BBC News - Home |
Take at home treatment for spinal muscular atrophy |
https://www.bbc.co.uk/news/health-59331903?at_medium=RSS&at_campaign=KARANGA
|
causes |
2021-11-19 02:26:12 |
ニュース |
BBC News - Home |
Bexleyheath: Two women and two children die in fire |
https://www.bbc.co.uk/news/uk-england-london-59341939?at_medium=RSS&at_campaign=KARANGA
|
crews |
2021-11-19 02:16:18 |
ニュース |
BBC News - Home |
Schools in England told to limit uniform costs |
https://www.bbc.co.uk/news/education-59339687?at_medium=RSS&at_campaign=KARANGA
|
shops |
2021-11-19 02:28:50 |
ニュース |
BBC News - Home |
Cladding crisis: 'Some days I can't leave the house' |
https://www.bbc.co.uk/news/business-59320814?at_medium=RSS&at_campaign=KARANGA
|
health |
2021-11-19 02:04:10 |
ニュース |
BBC News - Home |
The new way to buy a car without ever leaving your sofa |
https://www.bbc.co.uk/news/business-59295353?at_medium=RSS&at_campaign=KARANGA
|
way |
2021-11-19 02:22:11 |
LifeHuck |
ライフハッカー[日本版] |
エレコムの「左手用トラックボール」は両手作業最強ツールだった!【今日のライフハックツール】 |
https://www.lifehacker.jp/2021/11/244685lht-elecom-m-xt4drbk.html
|
紹介 |
2021-11-19 12:00:00 |
LifeHuck |
ライフハッカー[日本版] |
腰を曲げなくてOK! 雑草をラクに除草するガーデニングツール |
https://www.lifehacker.jp/2021/11/245998-machi-ya-skidger-review2-repost.html
|
skidger |
2021-11-19 11:15:00 |
北海道 |
北海道新聞 |
首相、五輪「日本の立場で検討」 米大統領が明言の外交ボイコット |
https://www.hokkaido-np.co.jp/article/613408/
|
北京冬季五輪 |
2021-11-19 11:13:00 |
北海道 |
北海道新聞 |
札幌市が3回目ワクチン接種券発送 医療従事者向け1万6千人 |
https://www.hokkaido-np.co.jp/article/613407/
|
医療従事者 |
2021-11-19 11:12:00 |
北海道 |
北海道新聞 |
子ども施策「財源投入を」 縦割り解消、基本法も強調 |
https://www.hokkaido-np.co.jp/article/613386/
|
関連 |
2021-11-19 11:10:20 |
北海道 |
北海道新聞 |
「仁徳陵」堤両側に埴輪列、堺 宮内庁、第2回共同発掘 |
https://www.hokkaido-np.co.jp/article/613392/
|
仁徳天皇陵 |
2021-11-19 11:01:24 |
北海道 |
北海道新聞 |
エンゼルスの本拠地、祝福ムード MVPグッズも販売 |
https://www.hokkaido-np.co.jp/article/613403/
|
大リーグ |
2021-11-19 11:01:24 |
北海道 |
北海道新聞 |
19日夕方から暴風警戒 留萌、宗谷など |
https://www.hokkaido-np.co.jp/article/613369/
|
道内 |
2021-11-19 11:02:51 |
北海道 |
北海道新聞 |
<音風景>落葉(千歳市支笏湖畔 楓沢) |
https://www.hokkaido-np.co.jp/article/613372/
|
千歳市支笏湖畔楓沢 |
2021-11-19 11:04:09 |
コメント
コメントを投稿